

2012 Engineering Formula Sheet

 $\overline{\mathbf{x}} = \frac{\sum \mathbf{x_i}}{n} (1.1b)$

1.0 Statistics

Mean

$$\mu = \frac{\sum x_i}{N} \tag{1.1a}$$

 μ = population mean

 \bar{x} = sample mean

 Σx_i = sum of all data values $(x_1, x_2, x_3, ...)$

N =size of population

n = size of sample

Median

Place data in ascending order.

If N is odd, median = central value

(1.2)If N is even, median = mean of two central values

N = size of population

Range (1.5)

$$Range = x_{max} - x_{min}$$
 (1.3)

 $x_{max} = maximum data value$

 x_{min} = minimum data value

Mode

Place data in ascending order.

Mode = most frequently occurring value

(1.4)

If two values occur with maximum frequency the data set is bimodal.

If three or more values occur with maximum frequency the data set is multi-modal.

Standard Deviation

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

(Population)

(1.5a)

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$$

(1.5b)

 σ = population standard deviation

s = sample standard deviation

 x_i = individual data value ($x_1, x_2, x_3, ...$)

 μ = population mean

 \bar{x} = sample mean

N = size of population

n = size of sample

2.0 Probability

Frequency

$$f_{X} = \frac{n_{X}}{n} \tag{2.1}$$

 f_x = relative frequency of outcome x

 n_x = number of events with outcome x

n = total number of events

Independent Events

 $P (A \text{ and } B \text{ and } C) = P_A P_B P_C$

(2.3)

P (A and B and C) = probability of independent events A and B and C occurring in sequence

 P_A = probability of event A

Binomial Probability (order doesn't matter)

$$P_{k} = \frac{n!(p^{k})(q^{n-k})}{k!(n-k)!}$$
 (2.2)

P_k = binomial probability of k successes in n trials

p = probability of a success

q = 1 - p = probability of failure

k = number of successes

n = number of trials

Mutually Exclusive Events

$$P (A \text{ or } B) = P_A + P_B$$

(2.4)

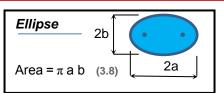
P (A or B) = probability of either mutually exclusive event A or B occurring in a trial

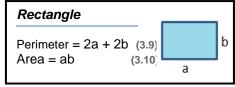
P_A = probability of event A

Conditional Probability

$$P(A|D) = \frac{P(A) \cdot P(D|A)}{P(A) \cdot P(D|A) + P(\sim A) \cdot P(D|\sim A)}$$
(2.5)

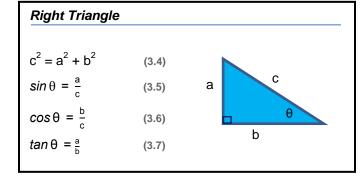
P (A|D) = probability of event A given event D

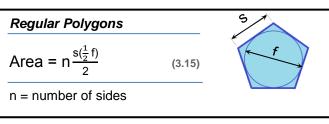

P(A) = probability of event A occurring


 $P(\sim A)$ = probability of event A not occurring


 $P(D|\sim A)$ = probability of event D given event A did not occur

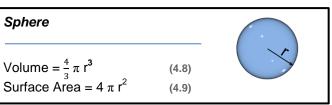
3.0 Plane Geometry

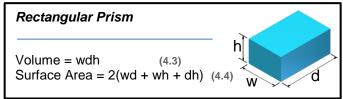

Circle Circumference = $2 \pi r$ (3.1) Area = π r²

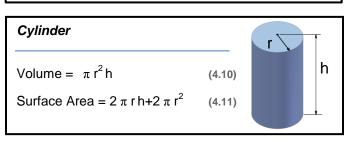


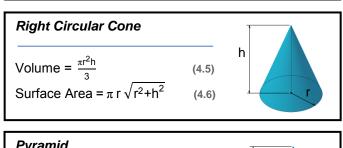


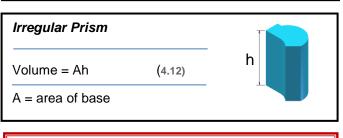
Triangle (3.6)	В .
Area = ½ bh	(3.11) a h C
$a^{2} = b^{2} + c^{2} - 2bc \cdot cos \angle A$ $b^{2} = a^{2} + c^{2} - 2ac \cdot cos \angle B$ $c^{2} = a^{2} + b^{2} - 2ab \cdot cos \angle C$	(3.13) C








4.0 Solid Geometry



Pyramid Volume = $\frac{Ah}{3}$ h (4.7)A = area of base

6.0 Conversions

Mass/Weight (6.1)

1 kg = $2.205 \text{ lb}_{\text{m}}$ 1 slug = $32.2 \text{ lb}_{\text{m}}$ 1 ton = $2000 \text{ lb}_{\text{m}}$ 1 lb = 16 oz

Length (6.2)

1 m = 3.28 ft 1 km = 0.621 mi 1 in. = 2.54 cm 1 mi = 5280 ft 1 yd = 3 ft

Time (6.3)

1 d = 24 h 1 h = 60 min 1 min = 60 s 1 yr = 365 d

Area (6.4)

1 acre = 4047 m^2 = $43,560 \text{ ft}^2$ = 0.00156 mi^2

Volume (6.5)

1L = 0.264 gal = 0.0353 ft³ = 33.8 fl oz 1mL = 1 cm³ = 1 cc

Temperature <u>Unit</u> Equivalents (6.6)

1 K = 1 °C = 1.8 °F = 1.8 °R See below for temperature calculation

Force (6.7)

1 N = 0.225 lb1 kip = 1,000 lb

Pressure (6.8)

1 atm = 1.01325 bar = 33.9 ft H_2O = 29.92 in. Hg= 760 mm Hg= 101,325 Pa = 14.7 psi 1psi = 2.31 ft of H_2O

Power (6.9)

1 W = 3.412 Btu/h= 0.00134 hp= 14.34 cal/min= $0.7376 \text{ ft·lb}_f\text{/s}$ 1 hp = 550 ft·lb/sec

Energy (6.10)

1 J = 0.239 cal = 9.48 x 10^{-4} Btu = 0.7376 ft·lb_f 1kW h = 3,600,000 J

7.0 Defined Units

1 J $= 1 \text{ N} \cdot \text{m}$ 1 N $= 1 \text{ kg·m} / \text{s}^2$ 1 Pa $= 1 N / m^2$ = 1 W/A1 V 1 W = 1 J/s1Ω = 1 V/A $1 \text{ Hz} = 1 \text{ s}^{-1}$ 1 F $= 1 A \cdot s / V$ 1 H $= 1 V \cdot s / V$

8.0 SI Prefixes

Numbe	ers Less Th	an One
Power of 10	Prefix	Abbreviation
10 ⁻¹	deci-	d
10 ⁻²	centi-	С
10 ⁻³	milli-	m
10 ⁻⁶	micro-	μ
10 ⁻⁹	nano-	n
10 ⁻¹²	pico-	р
10 ⁻¹⁵	femto-	f
10 ⁻¹⁸	atto-	а
10 ⁻²¹	zepto-	Z
10 ⁻²⁴	yocto-	У

Numbe	is Greater III	ian One
Power of 10	Prefix	Abbreviation
10 ¹	deca-	da
10 ²	hecto-	h
10 ³	kilo-	k
10 ⁶	Mega-	M
10 ⁹	Giga-	G
10 ¹²	Tera-	Т
10 ¹⁵	Peta-	Р
10 ¹⁸	Exa-	Е
10 ²¹	Zetta-	Z
10 ²⁴	Yotta-	Y

Numbers Greater Than One

9.0 Equations

Mass and Weight

 $M = VD_m \qquad (9.1)$ $W = mg \qquad (9.2)$ $W = VD_w \qquad (9.3)$

V = volume

D_m = mass density

m = mass

 D_w = weight density

g = acceleration due to gravity

Temperature

 $T_K = T_C + 273$ (9.4)

 $T_R = T_F + 460$ (9.5)

 $T_F = \frac{9}{5} T_C + 32$ (9.6)

 T_K = temperature in Kelvin

 T_C = temperature in Celsius

 T_R = temperature in Rankin

 T_F = temperature in Fahrenheit

Force and Moment

F = ma (9.7a) $M = Fd_{\perp}$ (9.7b)

F = force

m = mass

a = acceleration

M = moment

d₁= perpendicular distance

Equations of Static Equilibrium

 $\Sigma F_x = 0$ $\Sigma F_y = 0$ $\Sigma M_P = 0$ (9.8)

 F_x = force in the x-direction F_y = force in the y-direction

 $\dot{M_P}$ = moment about point P

9.0 Equations (Continued)

Energy: Work

 $W = F_{\parallel} \cdot d$

(9.9)

W = work

F_∥ = force parallel to direction of displacement

d = displacement

Power

$$P = \frac{E}{t} = \frac{W}{t}$$

(9.10)

 $P = \tau \omega$

(9.11)

P = power

E = energy

W = work

t = time

 τ = torque

 ω = angular velocity

Efficiency

Efficiency (%) = $\frac{P_{out}}{P_{in}} \cdot 100\%$ (9.12)

P_{out} = useful power output P_{in} = total power input

Energy: Potential

U = mgh

(9.13)

U = potential energy

m =mass

g = acceleration due to gravity

h = height

Energy: Kinetic

$$K = \frac{1}{2} mv^2$$

(9.14)

K = kinetic energy

m = mass

v = velocity

Energy: Thermal

 $\Delta Q = mc\Delta T$

(9.15) Δ**d**

 ΔQ = change in thermal energy

m = mass

c = specific heat

 ΔT = change in temperature

Fluid Mechanics

$$p = \frac{F}{\Delta}$$

(9.16)

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 (Charles' Law) (9.17)

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$
 (Gay-Lussanc's Law) (9.18)

$$p_1V_1 = p_2V_2$$
 (Boyle's Law) (9.19)

$$Q = Av$$

(9.20)

$$A_1V_1 = A_2V_2$$

(9.21)

$$P = Qp$$

(9.22)

absolute pressure = gauge pressure + atmospheric pressure (9.23)

p = absolute pressure

F = force

A = area

V = volume

T = absolute temperature

Q = flow rate

v = flow velocity

P = power

Electricity

Ohm's Law

$$V = IR$$

(9.32)

$$P = IV$$

(9.33)

$$R_T \text{ (series)} = R_1 + R_2 + \dots + R_n$$
 (9.34)

$$R_T$$
 (parallel) = $\frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}}$ (9.35)

Kirchhoff's Current Law

$$I_T = I_1 + I_2 + \cdots + I_n$$

or
$$I_T = \sum_{k=1}^{n} I_k$$
 (9.36)

Kirchhoff's Voltage Law

$$V_T = V_1 + V_2 + \cdots + V_n$$

or
$$V_T = \sum_{k=1}^{n} V_k$$
 (9.37)

V = voltage

 V_T = total voltage

I = current

 I_T = total current

R = resistance

 R_T = total resistance

P = power

Mechanics

$$\bar{s} = \frac{d}{1}$$

(9.24)

$$\bar{\mathbf{v}} = \frac{\Delta \mathbf{d}}{\Delta t}$$

(9.25)

$$a = \frac{v_f - v_i}{t}$$

(9.26)

$$X = \frac{v_i^2 \sin(2\theta)}{100}$$

(9.27)

$$v = v_i + at$$

$$d = d_1 + v_1 t + \frac{1}{2}at^2$$

(9.28)

$$d = d_i + V_i t + \frac{1}{2} a t^{-1}$$

(9.29)

$$v^2 = v_i^2 + 2a(d - d_i)$$

(9.30)

(9.31)

$$\tau = dFsin\theta$$

 \overline{s} = average speed \overline{v} = average velocity

v = velocity

 $v_i = initial \ velocity (t = 0)$

a = acceleration

X = range

t = time

 $\Delta \mathbf{d}$ = change in displacement

d = distance

 d_i = initial distance (t=0)

g = acceleration due to gravity

 θ = angle

 τ = torque

F = force

Thermodynamics

$$P = Q' = AU\Delta T$$

(9.38)

$$P = Q' = \frac{\Delta Q}{\Delta t}$$

(9.39)

$$U = \frac{1}{R} = \frac{k}{L}$$

$$P = \frac{kA\Delta T}{L}$$

(9.41)

$$A_1 V_1 = A_2 V_2$$

(9.42)

$$k = \frac{PL}{\Delta AT}$$

(9.44)

(9.43)

P = rate of heat transfer

Q = thermal energy

 $P_{net} = \sigma Ae(T_2^4 - T_1^4)$

A = area of thermal conductivity

U = coefficient of heat conductivity (U-factor)

 ΔT = change in temperature

 Δt = change in time

R = resistance to heat flow (R-value)

k = thermal conductivity

v = velocity

 P_{net} = net power radiated

 $\sigma = 5.6696 \times 10^{-8} \frac{W}{m^2 \cdot K^4}$

e = emissivity constant

L = thickness

 T_1 , T_2 = temperature at time 1, time 2

10.0 Section Properties

Moment of Inertia

$$I_{xx} = \frac{bh^3}{12}$$

I_{xx} = moment of inertia of a rectangular section about x axis

Complex Shapes Centroid

$$\overline{\mathbf{x}} = \frac{\sum x_i A_i}{\sum A_i}$$
 and $\overline{\mathbf{y}} = \frac{\sum y_i A_i}{\sum A_i}$

(10.2)

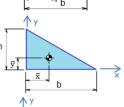
 \overline{x} = x-distance to the centroid

 \overline{y} = y-distance to the centroid

 $x_i = x$ distance to centroid of shape i

y_i = y distance to centroid of shape i

 A_i = Area of shape i


Rectangle Centroid

$$\bar{x} = \frac{b}{2}$$
 and $\bar{y} = \frac{h}{2}$ (10.3)

Right Triangle Centroid

$$\bar{x} = \frac{b}{3}$$
 and $\bar{y} = \frac{h}{3}$

Semi-circle Centroid

$$\overline{x} = r$$
 and $\overline{y} = \frac{4r}{3\pi}$

(10.5)

(10.4)

 \bar{y}

 \overline{x} = x-distance to the centroid

 \bar{y} = y-distance to the centroid

11.0 Material

Stress (axial)

$$\sigma = \frac{F}{\Lambda}$$

(11.1)

 $\sigma = stress$

F = axial force

A = cross-sectional area

Strain (axial)

$$\varepsilon = \frac{\delta}{L_0}$$

(11.2)

 $\varepsilon = strain$

L₀ = original length

 δ = change in length

Modulus of Elasticity

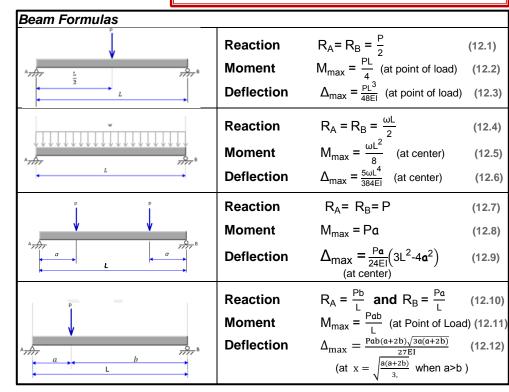
$$E = \frac{\sigma}{\epsilon}$$

(11.3)

$$E = \frac{(F_2 - F_1)L_0}{(\delta_2 - \delta_1)A}$$
 (11.4)

E = modulus of elasticity

 $\sigma = stress$


 $\varepsilon = strain$

A = cross-sectional area

F = axial force

 δ = deformation

12.0 Structural Analysis

Deformation: Axial

$$\delta = \frac{FL_0}{AE}$$

(12.13)

 δ = deformation

F = axial force

 L_0 = original length

A = cross-sectional area

E = modulus of elasticity

Truss Analysis

2J = M + R

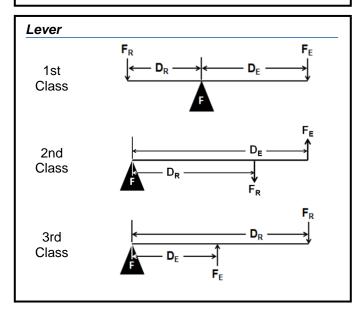
(12.14)

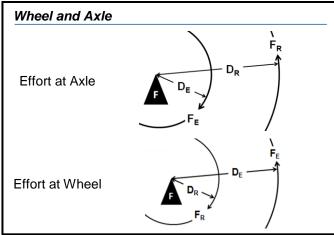
J = number of joints

M =number of members

R = number of reaction forces

13.0 Simple Machines

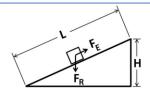

Mechanical Advantage (MA)


IMA=
$$\frac{D_E}{D_R}$$
 (13.1) AMA= $\frac{F_R}{F_E}$ (13.2)

% Efficiency=
$$\left(\frac{AMA}{IMA}\right)$$
 100 (13.3)

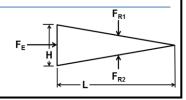
IMA = ideal mechanical advantage AMA = actual mechanical advantage

 D_E = effort distance D_R = resistance distance F_E = effort force F_R = resistance force

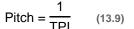

Pulley Systems

IMA = total number of strands of a single string supporting the resistance (13.4)

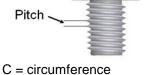
$$IMA = \frac{D_{E} \text{ (string pulled)}}{D_{R} \text{ (resistance lifted)}}$$
 (13.5)


Inclined Plane

IMA=
$$\frac{L}{H}$$
 (13.6)


Wedge

IMA=
$$\frac{L}{H}$$
 (13.7)



Screw

$$IMA = \frac{C}{Pitch}$$
 (13.8)

r = radius
Pitch = distance between

threads

TPI = threads per inch

Compound Machines


 $MA_{TOTAL} = (MA_1) (MA_2) (MA_3) ...$ (13.10)

Gears; Sprockets with Chains; and Pulleys with Belts Ratios

$$GR = \frac{N_{out}}{N_{in}} = \frac{d_{out}}{d_{in}} = \frac{\omega_{in}}{\omega_{out}} = \frac{\tau_{out}}{\tau_{in}}$$
 (13.11)

$$\frac{d_{out}}{d_{in}} = \frac{\omega_{in}}{\omega_{out}} = \frac{\tau_{out}}{\tau_{in}} \text{ (pulleys)}$$
 (13.12)

Compound Gears

GR = gear ratio

 ω_{in} = angular velocity - driver

 ω_{out} = angular velocity - driven

 N_{in} = number of teeth - driver

N_{out} = number of teeth - driven

din = diameter - driver

d_{out} = diameter - driven

 τ_{in} = torque - driver

 τ_{out} = torque - driven

14.0 Structural Design

Steel Beam Design: Shear

$$V_a \le \frac{V_n}{\Omega_v}$$

(14.1)

$$V_n = 0.6F_vA_w$$

(14.2)

V_a = internal shear force

 V_n = nominal shear strength

 $\Omega_{\rm v}$ = 1.5 = factor of safety for shear

 F_y = yield stress

 A_w = area of web

 $\frac{V_n}{V_n}$ = allowable shear strength

(14.3)

Steel Beam Design: Moment

$$M_a \le \frac{M_n}{\Omega_b}$$

$$M_n = F_y Z_x \tag{14.4}$$

M_a = internal bending moment

M_n = nominal moment strength

 $\Omega_b = 1.67 = factor of safety for$ bending moment

 $F_v = yield stress$

 Z_x = plastic section modulus about neutral axis

 $\frac{M_n}{M_n}$ = allowable bending strength

Spread Footing Design

 $q_{net} = q_{allowable} - p_{footing}$ (14.5)

$$p_{\text{footing}} = t_{\text{footing}} \cdot 150_{\frac{\text{lb}}{\text{ft}^2}} \qquad (14.6)$$

$$q = \frac{P}{A} \tag{14.7}$$

q_{net} = net allowable soil bearing pressure

q_{allowable} = total allowable soil bearing pressure

p_{footing} = soil bearing pressure due to footing weight

 $t_{footing}$ = thickness of footing

q = soil bearing pressure

P = column load applied

A = area of footing

15.0 Storm Water Runoff

Storm Water Drainage

 $Q = C_fCiA$ (15.1)

$$C_{c} = \frac{C_{1}A_{1} + C_{2}A_{2} + \cdots}{A_{1} + A_{2} + \cdots}$$
 (15.2)

Q = peak storm water runoff rate (ft^3/s)

C_f = runoff coefficient adjustment factor

C = runoff coefficient

i = rainfall intensity (in./h)

A = drainage area (acres)

Runoff Coe Adjustmen		
Return		
Period Cf		
1, 2, 5, 10	1.0	
25	1.1	
50	1.2	
100	1.25	

Rational Method Ru	noff Coefficients		
Categorized by Surfa	ace		
Forested	0.059—0.2		
Asphalt	0.7—0.95		
Brick	0.7—0.85		
Concrete	0.8—0.95		
Shingle roof 0.75—0.95			
Lawns, well draine	ed (sandy soil)		
Up to 2% slope 0.05—0.1			
2% to 7% slope 0.10—0.15			
Over 7% slope	0.15—0.2		
Lawns, poor drainage (clay soil)			
Up to 2% slope	0.13—0.17		
2% to 7% slope	0.18—0.22		
Over 7% slope	0.25—0.35		
Driveways,	0.75—0.85		
Categorized	l by Use		

0.05 - 0.3

0.05 - 0.3Pasture Unimproved 0.1-0.3 Parks 0.1 - 0.25Cemeteries 0.1 - 0.250.2 - 0.40Railroad yard Playgrounds 0.2 - 0.35**Business Districts** Neighborhood 0.5 - 0.70.7-0.95 City (downtown) Residential Single-family 0.3-0.5 Multi-plexes, 0.4 - 0.6Multi-plexes, 0.6 - 0.75Suburban 0.25 - 0.4Apartments. 0.5 - 0.7Industrial Light 0.5-0.8 Heavy 0.6 - 0.9

16.0 Water Supply

Hazen-Williams Formula

$$h_{f} = \frac{10.44LQ^{1.85}}{C^{1.85}q^{4.8655}}$$
 (16.1)

h_f = head loss due to friction (ft of H₂O)

L = length of pipe (ft)

Q = water flow rate (gpm)

C = Hazen-Williams constant

Dynamic Head

dynamic head = static head head loss (16.2)static head = change in elevation between source and discharge (16.3)

17.0 Heat Loss/Gain

Heat Loss/Gain

 $Q' = AU\Delta T$ (17.1)

(17.2)

Q = thermal energy

A = area of thermal conductivity

U = coefficient of heat

conductivity (U-factor)

 ΔT = change in temperature

R = resistance to heat flow (Rvalue)

Farmland

18.0 Hazen-Williams Constants

Typical Design Value	100	130	140	130	100
Clean, New Pipe	130	140	150	140	140
Typical Range	80 - 150	120 - 150		120 - 150	80-150
Pipe Material	Cast Iron and Wrought Iron	Copper, Glass or Brass	Cement lined Steel or Iron	Plastic PVC or ABS	Steel, welded and seamless or interior riveted

19.0 Equivalent Length of (Generic) Fittings

رکتی	Contract	Pipe Size										
anc	screwed rittings	1/4	3/8	1/2	3/4	1	11/4	11/2	2	2172	3	4
	Regular 90 degree	2.3	3.1	3.6	4.4	5.2	9'9	7.4	8.5	9.3	11.0	13.0
Elbows	Long radius 90 degree	5.1	2.0	2.2	2.3	2.7	3.2	3.4	3.6	3.6	4.0	4.6
	Regular 45 degree	£.0	0.5	0.7	6.0	1.3	1.7	2.1	2.7	3.2	4.0	5.5
1	Line Flow	8'0	1.2	1.7	2.4	3.2	9.4	5.6	7.7	9.3	12.0	17.0
8	Branch Flow	2.4	3.5	4.2	5.3	9.9	8.7	6.6	12.0	13.0	17.0	21.0
Return Bends	Regular 180 de gree	2.3	3.1	3.6	4.4	5.2	9'9	7.4	8.5	9.3	11.0	13.0
	Globe	0.12	22.0	22.0	24.0	29.0	37.0	42.0	54.0	62.0	79.0	110.0
Webser	Gate	£.0	9.0	9'0	2.0	8.0	1.1	1.2	1.5	1.7	1.9	2.5
	Angle	12.8	15.0	15.0	15.0	17.0	18.0	18.0	18.0	18.0	18.0	18.0
	Swing Check	7.2	7.3	8.0	8.8	11.0	13.0	15.0	19.0	22.0	27.0	38.0
Strainer			4.6	0.2	9.9	2.7	18.0	20.0	27.0	29.0	34.0	42.0

	Clanged Cittings	Pipe Size																
נומוו	Sen Fittings	1/2	3/4	1	11/4	11/2	7	21/2	3	4	2	9	8	10	12	14	16	18
	Regular 90 degree	6'0	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Elbows	Long radius 90 degree	1.1	1.3	1.6	2.0	2.3	2.7	2.7	3.4	4.2	5.0	2.7	0.7	8.0	0.6	9.4	10.0	11.0
	Regular 45 degree	0.5	9.0	0.8	1.1	1.3	1.7	2.0	2.6	3.5	4.5	5.6	7.7	0.6	11.0	13.0	15.0	16.0
7.00	Line Flow	0.7	8.0	1.0	1.3	1.5	1.8	1.9	2.2	2.8	3.3	3.8	4.7	5.2	6.0	6.4	7.2	5.5
0	Branch Flow	2.0	2.6	3.3	4.4	5.2	9.9	7.5	9.4	12.0	15.0	18.0	24.0	30.0	34.0	37.0	43.0	47.0
Return Bends	Return Bends Regular 180 degree	6.0	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	210	23.0
	Long radius 180 degree	1.1	1.3	1.6	2.0	2.3	2.7	2.9	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Globe	38.0	40.0	45.0	54.0	29.0	20.0	77.0	94.0	120.0	150.0	190.0	260.0	310.0	390.0			
Valves	Gate						2.6	2.7	2.8	5.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
	Angle	15.0	15.0	17.0	18.0	18.0	21.0	22.0	28.0	38.0	50.0	63.0	90.0	120.0	140.0	160.0	190.0	210.0
	Swing Check	3.8	5.3	7.2	10.0	12.0	17.0	21.0	27.0	38.0	50.0	63.0	90.0	120.0	140.0			

20.0 555 Timer Design

$$T = 0.693 (R_A + 2R_B)C$$
 (20.1)

$$f = \frac{1}{T} \tag{20.2}$$

duty-cycle =
$$\frac{(R_A + R_B)}{(R_A + 2R_B)} \cdot 100\%$$
 (20.3)

T = period

f = frequency

R_A = resistance A

 R_B = resistance B

C = capacitance

21.0 Boolean Algebra

Boolean Theorems

$X \cdot 0 = 0$	(21.1)

$$X \bullet 1 = X \tag{21.2}$$

$$X \cdot \overline{X} = 0$$
 (21.4)

$$X + 0 = X$$
 (21.5)

$$X + 1 = 1$$
 (21.6)

$$X + X = X \tag{21.7}$$

$$X + \overline{X} = 1 \tag{21.8}$$

$$\overline{\overline{X}} = X$$
 (21.9)

Commutative Law

$$X \bullet Y = Y \bullet X \tag{21.10}$$

$$X+Y=Y+X (21.11)$$

Associative Law

$$X(YZ) = (XY)Z (21.12)$$

$$X + (Y + Z) = (X + Y) + Z$$
 (21.13)

Distributive Law

$$X(Y+Z) = XY + XZ \tag{21.14}$$

$$(X+Y)(W+Z) = XW+XZ+YW+YZ$$
 (21.15)

Consensus Theorems

$$X + \overline{X}Y = X + Y \qquad (21.16)$$

$$X + \overline{X}\overline{Y} = X + \overline{Y}$$
 (21.17)

$$\overline{X} + XY = \overline{X} + Y$$
 (21.18)

$$\overline{X} + X\overline{Y} = \overline{X} + \overline{Y}$$
 (21.19)

DeMorgan's Theorems

$$\overline{XY} = \overline{X} + \overline{Y}$$
 (21.20)

$$\overline{X+Y} = \overline{X} \bullet \overline{Y}$$
 (21.21)

22.0 Speeds and Feeds

$$N = \frac{CS(12\frac{in.}{ft})}{\pi d}$$

(22.1)

$$f_m = f_t \cdot n_t \cdot N$$

(22.2)

Plunge Rate = ½·f_m

N = spindle speed (rpm)

CS = cutting speed (in./min)

d = diameter (in.)

f_m = feed rate (in./min)

 $f_t = feed (in./tooth/rev)$

 n_t = number of teeth

23.0 Aerospace

Forces of Flight

$$C_D = \frac{2D}{A\rho v^2}$$
 (23.1)

$$R_e = \frac{\rho vl}{\mu}$$
 (23.2)

$$C_{L} = \frac{2L}{Aov^2}$$
 (23.3)

$$M = Fd$$
 (23.4)

 C_L = coefficient of lift

 C_D = coefficient of drag

L = lift

D = drag

A = wing area

 ρ = density

 R_e = Reynolds number

v = velocity

I = length of fluid travel

 μ = fluid viscosity

F = force

m = mass

g = acceleration due to gravity

M = moment

Propulsion

 $F_N = W(v_j - v_o)$ (23.5)

 $I = F_{ave} \Delta t \tag{23.6}$

 $F_{\text{net}} = F_{\text{avg}} - F_{\text{g}} \tag{23.7}$

 $a = \frac{v_f}{\Lambda t}$ (23.8)

 F_N = net thrust

W = air mass flow

v_o = flight velocity

 v_i = jet velocity

I = total impulse

F_{ave} = average thrust force

 $\Delta t = \text{change in time (thrust)}$

duration)

 F_{net} = net force

 F_{avg} = average force

 F_{α} = force of gravity

v_f = final velocity

a = acceleration

 Δt = change in time (thrust duration)

NOTE: F_{ave} and F_{avg} are easily confused.

Energy

$$K = \frac{1}{2} \text{ mv}^2$$
 (23.9)

$$U = \frac{-GMm}{R}$$
 (23.10)

$$E = U + K = -\frac{GMm}{2R}$$
 (23.11)

G =
$$6.67 \times 10^{-11} \frac{\text{m}^3}{\text{kg} \times s^2}$$
 (23.12)

K = kinetic energy

m =mass

v = velocity

U = gravitational potential energy

G = universal gravitation constant

M =mass of central body

m = mass of orbiting object

R = Distance center main body to center of orbiting object

E = Total Energy of an orbit

Orbital Mechanics

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$
 (23.13)

$$T = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{\mu}} = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{GM}}$$
 (23.14)

$$F = \frac{GMm}{r^2}$$
 (23.15)

e = eccentricity

b = semi-minor axis

a =semi-major axis

T = orbital period

a = semi-major axis

 μ = gravitational parameter

F = force of gravity between two bodies

G = universal gravitation constant

M =mass of central body

m = mass of orbiting object

r = distance between center of two objects

Bernoulli's Law

$$\left(P_{S} + \frac{\rho v^{2}}{2}\right)_{1} = \left(P_{S} + \frac{\rho v^{2}}{2}\right)_{2}$$
 (23.16)

P_S = static pressure

v = velocity

 ρ = density

Atmosphere Parameters

$$T = 15.04 - 0.00649h$$

$$p = 101.29 \left[\frac{(T + 273.1)}{288.08} \right]^{5.256}$$
 (23.18)

$$\rho = \frac{p}{0.2869(T + 273.1)} \tag{23.19}$$

T = temperature

h = height

p = pressure

 ρ = density